Exam in VO "Statistical Physics", WS 2024/25

12.12.2024

- 1. $\Omega(E)$ is the number of microstates for a given energy E.
 - a. Express the fundamental assumption of statistical physics through $\Omega(E)$.
 - **b.** Discuss why we request that E has to jitter by a small amount δE .
 - **c.** How is the entropy related to $\Omega(E)$?
- 2. Consider $\Omega_1(E_1)$, $\Omega_2(E_2)$ for two isolated systems. Answer the following questions:
 - a. What happens if the two systems are brought into thermal contact?
 - **b.** Write down the expression $\Omega_{\text{tot}}(E_{\text{tot}})$ for the combined system.
 - c. What is the condition for thermal equilibrium?
 - d. Discuss why the entropy for the total system increases.
 - e. How can the expression for $\Omega_{\text{tot}}(E_{\text{tot}})$ be simplified for sufficiently large systems where fluctuations can be neglected?
 - **f.** Argue why $\frac{\partial S}{\partial E}$ is related to the inverse temperature and not the temperature itself.
- 3. Consider an entropy of the form S(E) = Nf(E). What is an extensive quantity? Compute the first and second derivatives of S(E) and $\Omega(E)$. Why is it advantageous to use an expansion of the entropy for large values of N?
- 4. Consider the partition function Z(E, V). How is it defined? Give the relations between Z and:
 - a. the mean energy,
 - **b.** the energy fluctuations,
 - **c.** the entropy.
 - d. How is the free energy F defined? How is it related to the canonical partition function? When should one use F rather than the energy E?
- 5. Consider two systems with $\Omega_1(E_1, V_1, N_1)$ and $\Omega_2(E_2, V_2, N_2)$ that can also exchange particles. What is the chemical potential μ , how is it related to the entropy S? Derive the condition for thermal equilibrium between the two systems.

(Continues on next page)

6. The grand-canonical ensemble $\Phi = F - \mu N$ has the total differential

$$d\Phi = -S \, dT - p \, dV - N \, d\mu$$

- a. On which quantities does Φ depend?
- **b.** Show how to obtain S and p from Φ .
- c. Φ can be written as the product between an extensive quantity (which one?) and an intensive function. On which quantities does the intensive function depend?
- 7. Compute the partition function for a photon gas. Show the steps needed for the calculation in full length. Discuss for a single mode the limits of low and high temperature (with respect to what?).
- 8. Derive the grand-canonical partition function for non-relativistic electrons in three dimensions. What is the Fermi energy? Obtain the general expression from which the chemical potential $\mu(T)$ can be derived. Discuss why the heat capacity C_V at low temperatures is so small in comparison to a classical gas.