Advanced Quantum Mechanics VO WS 2020/21 Written exam Feb. 1, 2021

Start each exercise on a new sheet of paper.

You are allowed to use one A4 sheets with your own hand-written formulas (no solved exercises),

 $\hbar = 1$ everywhere

1. Two-level boson model (8P)

We consider bosonic particles on a two-level system described by the Hamiltonian

$$\hat{H}_0 = -t \left(b_1^{\dagger} b_2 + b_2^{\dagger} b_1 \right) \qquad t > 0 \tag{1}$$

where b_i^{\dagger}/b_i are creation/destruction operators for a particle on level i (i = 1, 2). Solve the hamiltonian in the following way:

Introduce two new creation $(d_A^{\dagger}, d_B^{\dagger})$ and destruction (d_A, d_B) operators related to the b_i by the transformations

$$b_1 = \alpha \ (d_A + d_B)$$
 $b_2 = \alpha \ (d_A + \beta \ d_B)$ $\alpha, \beta = \text{real constants}, \alpha > 0$ (2)

and their hermitian conjugates.

(a) Given that the d_x (x = A, B) obey the correct commutation relations

$$[d_x, d_y^{\dagger}] = \delta_{x,y}$$

determine for which values of the constants α , β , the b_i , b_i^{\dagger} obey correct commutation relations as well.

For simplicity, you just need to do that for the commutators containing b_2^{\dagger} .

(b) Show that in terms of the d_x the Hamiltonian becomes

$$\hat{H}_0 = -p \ d_A^{\dagger} d_A + q \ d_B^{\dagger} d_B \qquad p, q > 0 \tag{3}$$

and determine the values of p and q.

(c) Write down the normalized N = 2-particle ground state $|G\rangle$ in second quantisation (in terms of the $d^{\dagger}_{A/B}$) and determine its eigenenergies and degeneracies. (d) Same for the first excited state $|E\rangle$

Notice: you can solve (c),(d) even without having solved (a),(c). In this case, use directly (3) without determining p, q.

2. Wigner-Eckart's theorem (8P)

Consider a hydrogen atom in a state $|n, \ell, m\rangle$, where n = 9 and ℓ, m are the usual angular momentum quantum numbers.

For which values of (ℓ, m) are the following matrix elements nonzero? [Indicate explicitly the pairs (ℓ, m) , example: (2, 1), (3, 0), (5, -2)].

- (a) $\langle n, \ell, m | \hat{z} | n, 3, -3 \rangle$
- (b) $\langle n, \ell, m | \hat{x} | n, 4, 3 \rangle$
- (c) $\langle n, \ell, m | \hat{x} + i \hat{y} | n, 4, 0 \rangle$

(d) $\langle n, \ell, m | (\hat{x}^2 + \hat{y}^2 + \hat{z}^2) | n, 2, -1 \rangle$

Please turn over

3. Wigner-Eckart's theorem $(j = \frac{3}{2}, \frac{1}{2} \text{ states})$ (8P)

Consider now a set of states $|\beta, j, m\rangle$, where β is some quantum number, and j, m are the usual quantum numbers associated to \mathbf{J}^2 and \mathbf{J}_z . $\hat{\mathbf{V}}$ is a vector operator. Given the matrix element

$$\left\langle \beta, \frac{3}{2}, \frac{1}{2} \middle| \hat{V}_Z \middle| \beta, \frac{1}{2}, \frac{1}{2} \right\rangle = \alpha$$

determine the following matrix elements in terms of the real quantity α , whenever possible and indicate when this is not possible (i.e. when the knowledge of α is not sufficient).

Notice: The parity selection rule does not apply here. Hint: $\hat{V}_{\pm 1} = \mp (\hat{V}_X \pm i \hat{V}_Y) / \sqrt{2}$

4. Fermi Sphere (8P)

The energy of a free electron with momentum \mathbf{k} is given by $\varepsilon_{\mathbf{k}} = \frac{\hbar^2 \mathbf{k}^2}{2m}$. $c^{\dagger}_{\mathbf{k},\sigma}, c_{\mathbf{k},\sigma}$ are creation and destruction operators for an electron with momentum \mathbf{k} and spin σ . The momenta are discrete.

(a, 2P) Write down the corresponding Hamiltonian in second quantisation (SQ).

(b) Describe in words its ground state $|F\rangle$ (i.e.: what is the filled Fermi sphere, which levels are occupied?).

(c) Write down the ground state $|F\rangle$ in SQ

(d) Write down the expression for the total number of particles N_p and the total energy E_T of $|F\rangle$. (Their values, not operators. It's a sum over \mathbf{k}, σ , you don't need to transform it into an integral, nor to evaluate it. However, indicate the range of \mathbf{k})

(e) Write down in SQ the operator counting the number of particles with momentum \mathbf{k} and spin σ .

(f) Write down an excited state (particle-hole excitation) in SQ, as well as its excitation energy (i.e. the difference between its energy and E_T). You just have to apply suitable operators to $|F\rangle$

(g) Explain (f) by using the Fermi sphere.