## Advanced Quantum Mechanics VO <br> WS 2020/21 Written exam Feb. 1, 2021

Start each exercise on a new sheet of paper.
You are allowed to use one A4 sheets with your own hand-written formulas (no solved exercises),

$$
\hbar=1 \text { everywhere }
$$

## 1. Two-level boson model (8P)

We consider bosonic particles on a two-level system described by the Hamiltonian

$$
\begin{equation*}
\hat{H}_{0}=-t\left(b_{1}^{\dagger} b_{2}+b_{2}^{\dagger} b_{1}\right) \quad t>0 \tag{1}
\end{equation*}
$$

where $b_{i}^{\dagger} / b_{i}$ are creation/destruction operators for a particle on level $i(i=1,2)$. Solve the hamiltonian in the following way:
Introduce two new creation $\left(d_{A}^{\dagger}, d_{B}^{\dagger}\right)$ and destruction $\left(d_{A}, d_{B}\right)$ operators related to the $b_{i}$ by the transformations

$$
\begin{equation*}
b_{1}=\alpha\left(d_{A}+d_{B}\right) \quad b_{2}=\alpha\left(d_{A}+\beta d_{B}\right) \quad \alpha, \beta=\text { real constants, } \alpha>0 \tag{2}
\end{equation*}
$$

and their hermitian conjugates.
(a) Given that the $d_{x}(x=A, B)$ obey the correct commutation relations

$$
\left[d_{x}, d_{y}^{\dagger}\right]=\delta_{x, y}
$$

determine for which values of the constants $\alpha, \beta$, the $b_{i}, b_{i}^{\dagger}$ obey correct commutation relations as well.
For simplicity, you just need to do that for the commutators containing $b_{2}^{\dagger}$.
(b) Show that in terms of the $d_{x}$ the Hamiltonian becomes

$$
\begin{equation*}
\hat{H}_{0}=-p d_{A}^{\dagger} d_{A}+q d_{B}^{\dagger} d_{B} \quad p, q>0 \tag{3}
\end{equation*}
$$

and determine the values of $p$ and $q$.
(c) Write down the normalized $N=2$-particle ground state $|G\rangle$ in second quantisation (in terms of the $d_{A / B}^{\dagger}$ ) and determine its eigenenergies and degeneracies.
(d) Same for the first excited state $|E\rangle$

Notice: you can solve (c),(d) even without having solved (a),(c). In this case, use directly (3) without determining $p, q$.

## 2. Wigner-Eckart's theorem (8P)

Consider a hydrogen atom in a state $|n, \ell, m\rangle$, where $n=9$ and $\ell, m$ are the usual angular momentum quantum numbers.
For which values of $(\ell, m)$ are the following matrix elements nonzero?
[Indicate explicitly the pairs $(\ell, m)$, example: $(2,1),(3,0),(5,-2)$ ].
(a) $\langle n, \ell, m| \hat{z}|n, 3,-3\rangle$
(b) $\langle n, \ell, m| \hat{x}|n, 4,3\rangle$
(c) $\langle n, \ell, m| \hat{x}+i \hat{y}|n, 4,0\rangle$
(d) $\langle n, \ell, m|\left(\hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right)|n, 2,-1\rangle$

## Please turn over

## 3. Wigner-Eckart's theorem $\left(j=\frac{3}{2}, \frac{1}{2}\right.$ states) ( 8 P )

Consider now a set of states $|\beta, j, m\rangle$, where $\beta$ is some quantum number, and $j, m$ are the usual quantum numbers associated to $\mathbf{J}^{2}$ and $\mathbf{J}_{z}$. $\hat{\mathbf{V}}$ is a vector operator. Given the matrix element

$$
\left\langle\beta, \frac{3}{2}, \frac{1}{2}\right| \hat{V}_{Z}\left|\beta, \frac{1}{2}, \frac{1}{2}\right\rangle=\alpha
$$

determine the following matrix elements in terms of the real quantity $\alpha$, whenever possible and indicate when this is not possible (i.e. when the knowledge of $\alpha$ is not sufficient).
(a) $\left\langle\beta, \frac{3}{2}, m\right| \hat{V}_{Z}\left|\beta, \frac{1}{2},-\frac{1}{2}\right\rangle$
(b) $\left\langle\beta, \frac{1}{2}, m\right| \hat{V}_{Z}\left|\beta, \frac{3}{2}, \frac{1}{2}\right\rangle$
(c) $\left\langle\beta, \frac{1}{2}, \frac{1}{2}\right| \hat{V}_{Z}\left|\beta, \frac{1}{2}, \frac{1}{2}\right\rangle$
(d) $\left\langle\beta, \frac{3}{2}, m\right| \hat{V}_{X}\left|\beta, \frac{1}{2}, \frac{1}{2}\right\rangle$


Notice: The parity selection rule does not apply here.
Hint: $\hat{V}_{ \pm 1}=\mp\left(\hat{V}_{X} \pm i \hat{V}_{Y}\right) / \sqrt{2}$

## 4. Fermi Sphere (8P)

The energy of a free electron with momentum $\mathbf{k}$ is given by $\varepsilon_{\mathbf{k}}=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}$.
$c_{\mathbf{k}, \sigma}^{\dagger}, c_{\mathbf{k}, \sigma}$ are creation and destruction operators for an electron with momentum $\mathbf{k}$ and spin $\sigma$. The momenta are discrete.
(a, 2P) Write down the corresponding Hamiltonian in second quantisation (SQ).
(b) Describe in words its ground state $|F\rangle$ (i.e.: what is the filled Fermi sphere, which levels are occupied?).
(c) Write down the ground state $|F\rangle$ in SQ
(d) Write down the expression for the total number of particles $N_{p}$ and the total energy $E_{T}$ of $|F\rangle$. (Their values, not operators. It's a sum over $\mathbf{k}, \sigma$, you don't need to transform it into an integral, nor to evaluate it. However, indicate the range of $\mathbf{k}$ )
(e) Write down in SQ the operator counting the number of particles with momentum $\mathbf{k}$ and $\operatorname{spin} \sigma$.
(f) Write down an excited state (particle-hole excitation) in SQ, as well as its excitation energy (i.e. the difference between its energy and $E_{T}$ ). You just have to apply suitable operators to $|F\rangle$
(g) Explain (f) by using the Fermi sphere.

