Advanced Quantum Mechanics UE WS 2024/25 Written exam Jan. 10 2025

Start each exercise on a new sheet of paper. Don't forget to write your name and Matrikelnnumer on each sheet

You are allowed to use one A4 sheet with your own hand-written formulas, written on one side only, (no solved exercises),

Cellphones must be switched off and put in your bag or pocket

$\hbar = c = 1$ everywhere

1 Addition of angular momentum (14P)

Two interacting particles i=1,2 with spin $s_1=3$ and $s_2=1$, respectively are described by the hamiltonian

$$\hat{H} = 2\lambda \; \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$$
 (scalar product),

where $\hat{\mathbf{S}}_i$ is the spin operator of particle i, and λ a positive constant. The spatial part of the wavefunction is neglected.

(a) Let $\hat{\mathbf{J}} = \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2$ be the total spin (internal angular momentum). What are the possible (eigen)values of $\hat{\mathbf{J}}^2$ and of the associated quantum number j?

(b) Determine the eigenvalues of \hat{H} as well as their degeneracies.

The basis states of the two-spins system can be expressed, on the one hand, as tensor products

$$|m_1\rangle |m_2\rangle$$
 . (1)

Or as $|j,m\rangle$, i.e. eigenstates of $\hat{\mathbf{J}}^2$ and \hat{J}^z .

(c) Verify that the total number of basis states in the product state (1) and in the $|j,m\rangle$ representation is the same.

(d) Express the states $|j=4,m=4\rangle$ and $|j=4,m=-4\rangle$ in terms of the product states (1).

(e) Express the state¹ $|j=4,m=3\rangle$ in terms of the product states (1), by applying $\hat{J}^-=\hat{S}_1^-+\hat{S}_2^-$.

(f) Express the state $|j=3,m=3\rangle$ in terms of the (1) (Hint: orthogonalisation)

(g) What is the probability that a measure of \hat{S}_2^z in this state gives 0?

Hint:
$$J^-|\ell,m\rangle = \sqrt{\ell(\ell+1) - m(m-1)} |\ell,m-1\rangle$$

2 Electric field and Gauge invariance (10P)

We consider a particle with charge q=1 and mass m=1 in an homogeneous, time-dependent electric field

$$\mathbf{E} = 2\mathcal{E}\mathbf{e}_x \ t \tag{2}$$

¹No normalisation is requested for the states here and below

We can restrict the problem to one dimension, i.e. consider just the x coordinate, and use units in which $\hbar = c = 1$.

- (a) Different forms of the vector (A) and the scalar (φ) potentials related by a gauge transformation give the same E. Find $\mathbf{A}(x,t)$ and $\varphi(x,t)$ for the following two cases (gauges. One particular solution each is sufficient):
- (1) $\mathbf{A}_1(x,t) \neq 0$,
- $\varphi_1(x,t)=0$
- (2) $\mathbf{A}_2(x,t) = 0$,
- $\varphi_2(x,t) \neq 0.$
- (b) Find also the gauge transformation (i.e. one possible choice for the function $\chi(x,t)$ generating it) r which transforms the potentials of (1) into the ones of (2). Write down the Hamiltonian H_1 for (1) and H_2 for (2).

Hint: Ansatz: $(1)\mathbf{A}_1 = f_1(t)$, $(2) \varphi_2 = f_2(t)x$, $\chi = f_3(t) x$,

- (c) Write down the Heisenberg equations of motion for the operators x and p of the charged particle discussed above for both gauges. (Provide the result: it is not sufficient to just write the commutators).
- (d) Solve them for $v = \dot{x}$ (velocity) and p explicitly.
- (e) Is v gauge invariant, is p gauge invariant? Argue based on the results from (d).

3 Bosons in second quantization (8P)

Consider bosonic particles whose first quantisation Hamiltonian \hat{H}_{FQ} has eingenstates (levels) $|\varphi_k\rangle$ and eigenenergies $\varepsilon_k = \alpha \cdot k$, with $k = 1, 2, \dots, \infty$ and α a positive constant (please, notice the values of k).

Let b_k^{\dagger} , b_k be the creation and destruction operators for a particle in the level $|\varphi_k\rangle$.

(a) Write down the corresponding Hamiltonian \hat{H} in second quantisation

For a given (generic) value of the total number of particles N ($N \geq 2$)

- (b) write down the normalized ground state $|G_N\rangle$ of \hat{H} in second quantisation and determine its eigenenergy and degeneracy.
- (c) same as (b) for the first excited state(s) $|E_N\rangle$.
- (d) Same as (b) for the second excited state(s) $|S_N\rangle$.

4 Wigner-Eckart's theorem (8P)

Consider a hydrogen atom in a state $|n, \ell, m\rangle$, where n = 6 and ℓ, m are the usual angular momentum quantum numbers.

For which values of (ℓ, m) are the following matrix elements nonzero? [Indicate explicitly the pairs (ℓ, m) , example: (2, 1), (3, 0), (5, -2)].

- (a) $\langle n, \ell, m | (2\hat{x}^2 + 2\hat{y}^2 + 2\hat{z}^2 2 \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}) | n, 4, -2 \rangle$
- (b) $\langle n, \ell, m | \hat{z} | n, 3, -3 \rangle$
- (c) $\langle n, \ell, m | \hat{y} | n, 4, -4 \rangle$
- (d) $\langle n, \ell, m | \hat{x} i \hat{y} | n, 2, 1 \rangle$

Hint: $\hat{V}_{\pm 1} = \mp (\hat{V}_x \pm i\hat{V}_y)/\sqrt{2}$