1. Test aus Theoretische Elektrodynamik

10. Februar 2022

- Aufgabe 1 (10 Punkte) Betrachten Sie N Punktladungen mit den Ladungen q_i , die sich an den Orten r_i befinden.
 - a. Geben Sie die Ausdrücke für das elektrische Feld E(r) sowie das zugehörige Potential V(r) an.
 - b. Leiten Sie den Ausdruck für die potentielle Energie W her, die in der Ladungsverteilung gespeichert ist.
 - c. Geben Sie für eine kontinuierliche Ladungsverteilung $\rho(r)$ die Ausdrücke für das elektrische Feld E(r) sowie das zugehörige Potential V(r) an.
 - d. Verallgemeinern Sie den Ausdruck aus Aufgabe 1(b) für eine kontinuierliche Ladungsverteilung $\rho(r)$ und drücken Sie W durch das elektrische Feld E(r) aus.

Aufgabe 2 (10 Punkte)

- a. Diskutieren Sie, weshalb die Oberfläche eines elektrischen Leiters eine Äquipotentialfläche ist und weshalb im Inneren des Leiters kein Feld vorhanden ist.
- b. Zeigen Sie, dass die Lösung der Poissongleichung für eine Ladungsverteilung $\rho(r)$ in einem Gebiet Ω eindeutig ist, wenn man die Werte des Potentials am Rand $\partial\Omega$ kennt (1. Eindeutigkeitstheorem).

Aufgabe 3 (10 Punkte)

- a. Betrachten Sie eine Ladungsverteilung $\rho_f + \rho_b$, die aus einem freien und einem gebundenen Teil besteht. Wie ist ρ_b mit der Polarisation P verknüpft?
- b. Leiten Sie aus dem Gaußschen Satz die dielektrische Verschiebung her. Wie ist sie definiert?
- c. Was sind "lineare Medien"? Geben Sie den Zusammenhang zwischen Polarisation und elektrischem Feld an.
- d. Erläutern Sie die Begriffe "Suszeptibilität" sowie "Dielektrizizätskonstante". Wie sind sie definiert, was beschreiben sie physikalisch?

Aufgabe 4 (10 Punkte)

- a. Wie sieht in der Magnetostatik der magnetische Fluss B(r) aus, der von einer Stromverteilung J(r) hervorgerufen wird?
- **b.** Wie sind $\nabla \cdot \boldsymbol{B}$ und $\nabla \times \boldsymbol{B}$ in der Magnetostatik definiert?
- c. Zeigen Sie, wie das Vektorpotential in der Magnetostatik definiert ist und leiten Sie die Bestimmungsgleichung für A(r) her.

(weiter auf der Rückseite)

- d. Diskutieren Sie das Prinzip von Eichtransformationen und bestimmen Sie die Eichfunktion $\lambda(r)$, die zu einem transversalen Potential $\nabla \cdot A$ führt.
- Aufgabe 5 (10 Punkte) Schreiben Sie die Maxwellgleichungen an und zeigen Sie, wie man aus ihnen das Poyntingtheorem herleiten kann. Diskutieren Sie in Worten die Bedeutung des Theorems.

Aufgabe 6 (10 Punkte)

- a. Zeigen Sie, wie man aus den Maxwellgleichungen die Wellengleichung herleiten kann.
- b. Betrachten Sie eine ebene, harmonische Welle mit Wellenzahlvektor k sowie Kreisfrequenz ω (komplexe Darstellung): Wie sehen die Maxwellgleichungen aus? Tipp: Ersetzen Sie $\nabla \to k$ und $\frac{\partial}{\partial t} \to -\omega$.
- c. Bestimmen Sie den Zusammenhang wischen Wellenzahl k und Kreisfrequenz ω (Dispersionsrelation).
- d. Zeigen Sie, dass elektromagnetische Wellen Transversalwellen sind.
- Aufgabe 6 (10 Punkte) Schreiben Sie die Maxwellgleichungen in Materie an (benutzen Sie E, D, B und H). Zeigen Sie durch explizite Rechnung, wie man die Randbedingungen der Felder an einer Grenzschicht in Abwesenheit von Oberflächenladungen und Oberflächenströmen bestimmen kann.

Aufgabe 7 (10 Punkte)

- a. Zeigen Sie, wie in der Elektrodynamik die Potentiale V und A definiert sind.
- b. Was sind Eichtransformationen? Erklären Sie den Begriff anhand der Lorenzeichung.
- c. Geben Sie die allgemeinen Ausdrücke für V(r,t) und A(r,t) in der Lorenzeichung an (retardierte Potentiale).
- d. Wie lässt sich der Ausdruck für $A(r)e^{-i\omega t}$ für eine harmonische Zeitabhängigkeit vereinfachen? Leiten Sie den führenden Term für die Potentiale in großer Entfernung von der Quelle her.

Aufgabe 8 (10 Punkte)

- a. Wie sind die Vierergeschwindigkeit sowie der Viererimpuls in der Relativitätsteorie definiert? Wie transformieren sie bei einer Lorentztransformation?
- b. Geben Sie den kovarianten Ausdruck für die Lorentzkraft an (erläutern Sie kurz die vorkommenden Größen). Wie ist die Viererkraft f^{μ} mit der üblichen Kraft F verknüpft?
- c. Wie sehen die Maxwellgleichungen in kovarianter Formulierung aus?