

ITPCP Institut für Theoretische Physik **Computational Physics**

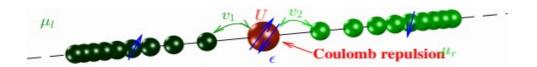
Material Science

Quantum Many-**Body Systems**

Theoretische Plasmaphysik

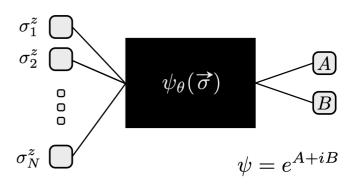
Theoretische Biophysik

Theoretische Astrophysik



Quantum Many-Body Systems

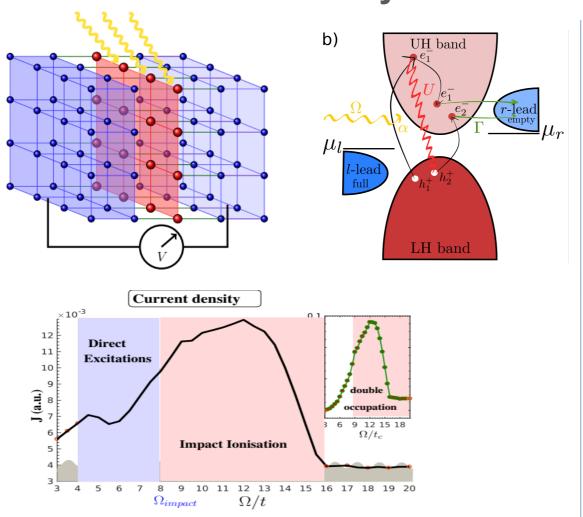
E. Arrigoni, W. Von der Linden, H.G. Evertz

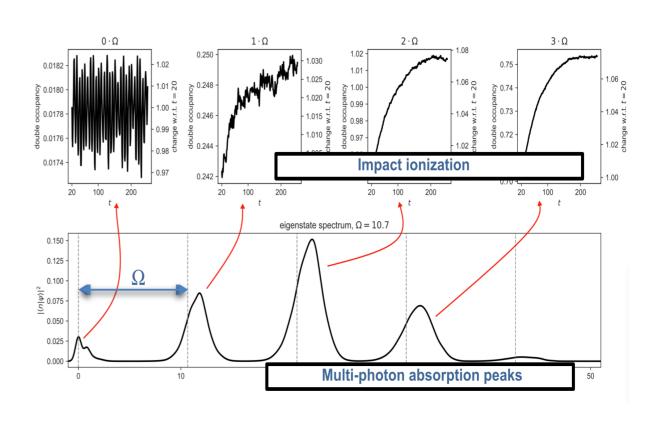

https://itp.tugraz.at/~arrigoni/

Nanotransport in korrelierten Systemen

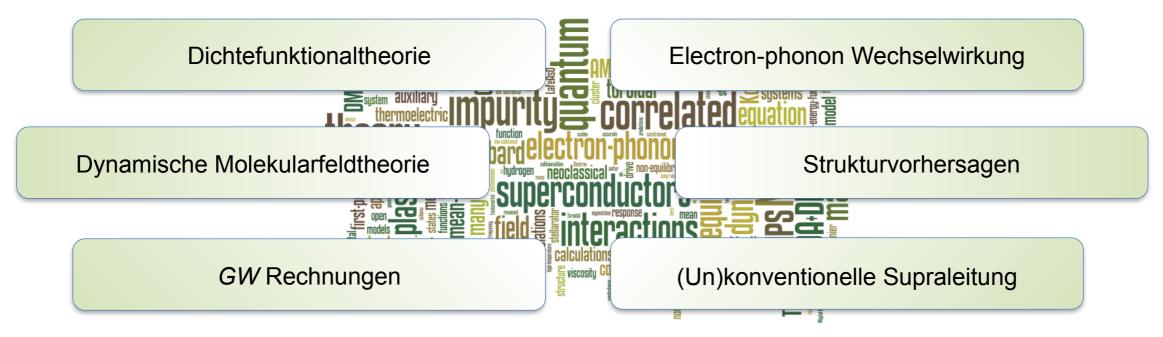
(Copyright Material entfernt)

Machine-learning Methoden




(Collaboration with Institute of Computer Graphics and Vision)

Photovoltaic systems based on correlated insulators



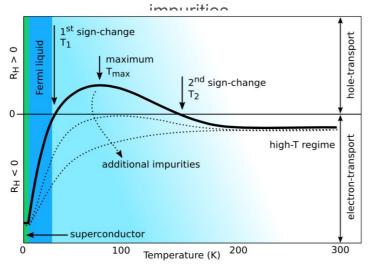
Computational Material Science

M. Aichhorn und C. Heil

Ab-initio Rechnungen für verschiedene Materialklassen mit unterschiedlichsten Methoden

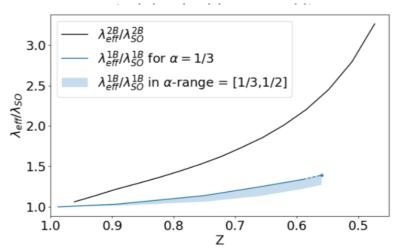
Kollaborationen

Theorie: CCQ Flatiron (Georges, Wentzel), Rom (Boeri), SN Bose Kolkata (Dasgupta), Austin (Giustino), ... Experiment: St. Andrews (Wahl), Carnegie Institution Washington (Struzhkin), MPI Mainz (Eremets)

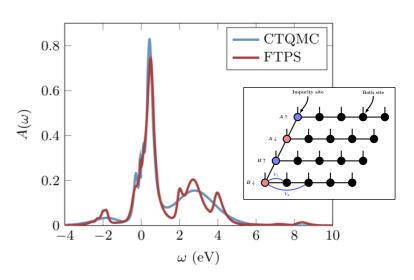


Computational Material Science

Arbeitsgruppe M. Aichhorn, H.G. Evertz


Hall Effect in Ruthenates

- sign change of the Hall coefficient vs T
- importance of Spin-orbit coupling and



Spin orbit coupling and Correlations

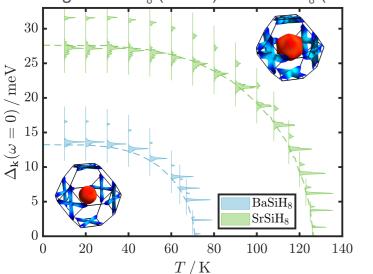
- model level: 3-band, graphene

Entwicklung neuartiger Methoden (Matrix-Product States)

(npj quantum materials 2019)

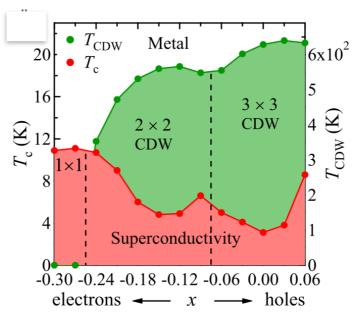
(several PRB, PRL, JPCM)

(PRX 2017, SciPostPhys 2020)



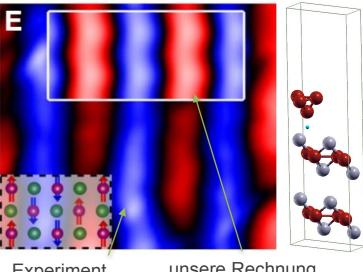
Computational Material Science

Arbeitsgruppe C. Heil


High-T_c Supraleitung in Hydriden

- normalerweise stabil bei Drücken > 100GPa
- Vorhersage: BaSiH₈ (3GPa) und SrSiH₈ (25GPa)

(fünf PRB Rapids/Letters, JCP Roadmap article 2021)


Ladungsordnung und SL in niederdimensionalen Systemen

(PRL 2017, 2018, J. Phys. Chem. Lett 2019, J. Mat. Chem. 2020, u.a.)

Eisenbasierte Supraleiter z.B. FeTe

- spin-polarisierte STM Simulationen
- He als Probe Particle

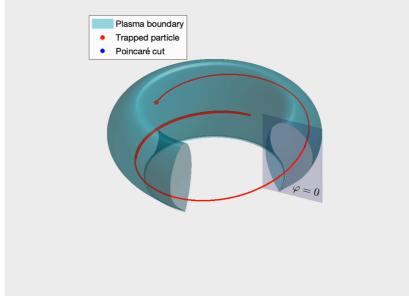
Experiment

unsere Rechnung

(Sci. Adv. 2019, Nano Lett. 2021, PRL 2021, u.a.)

Theoretische Plasmaphysik

W. Kernbichler und C. Albert


Einbindung in das europäische Fusionsforschungsprogramm

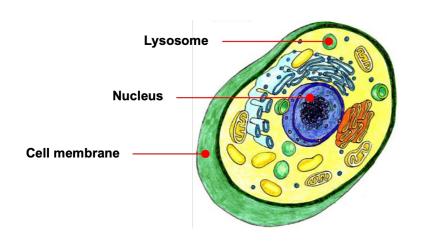
- Langjährige Kooperation mit dem Max-Planck-Institut für Plasmaphysik
- Mitwirkung an der Entwicklung Großexperimenten zur Energiegewinnung (ITER)

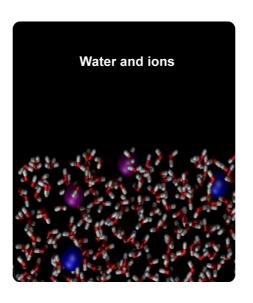
Geometrische Integration und Klassifizierung von Teilchenbahnen

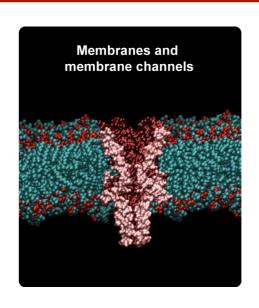
Berechnung der Verluste hochenergetischer Alpha-Teilchen in der Stellaratoroptimierung

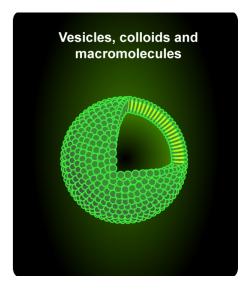
3 papers in JCP und PoP by Albert, Eder, Kasilov et al. (2020)

Weitere Aktivitäten


- Berechnungen zur Plasmaheizung im Stellarator Wendelstein 7-X
- Modellierung von 3D-Störungen im Tokamak ASDEX Upgrade
- Beteiligung an zwei EUROfusion-Arbeitsgruppen zu Theorie&Computing




Meyer et al. Nuclear Fusion 59 (11), 112014 (2019)

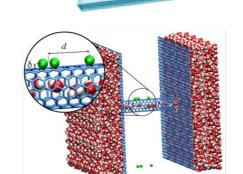

Theoretical Biophyics - Douwe Jan Bonthuis - bonthuis@tugraz.at

Components of a biological cell

Research questions

How do membrane channels transport water and ions?

How do different types of molecules affect the shape of biological membranes?


What physical mechanisms govern the mobility of vesicles?

Technological applications

Biomedical applications and biomimetics

Nanofluidics

Energy conversion strategies Water filtering and cleaning

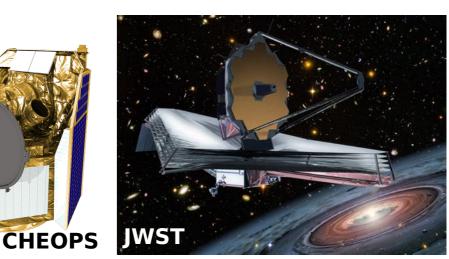
Possible BSc/MSc topics

Molecular dynamics simulations of ion adsorption on amyloid bundles

Nonlinear electrokinetics of a charged sphere using finite element calculations

Monte Carlo simulations of a simple lipid in water

... and many more!


ASTRONOMY & SPACE SCIENCE @ TU GRAZ AG PROF CHRISTIANE HELLING

Wetter und Klima extrasolarer Planeten unter dem Einfluß verschiedener Zentralgestirne

- Modellierung von Wolkenbildung und Wolkenfeedback auf extrasolare Atmosphären (zB Bildung von Metalloxidclustern (TiO2, V2O5, Al2O3) als *cloud condensation nuclei*)
- Simulation der globalen Wolkenbedeckung extrasolarer Gasriesenplaneten 3D GCMs
- Modellierung von Ionisationsprozesse und Ionosphären in Exoplanets

Ziel: Unterstützung der Interpretation von Beobachtungsdaten (CHEOPS, JWST)

Inwiefern repräsentiert die Atmosphärencher den Entwicklungszustand eines Exoplaneten?

Wo arbeiten unsere AbsolventInnen?

Nach Ihrem Abschluss arbeiten unsere AbsolventInnen in verschiedenen lokalen und internationalen Firmen, sowie im internationalen und nationalen Universitären oder Forschungsbereich.

(Copyright Material wurde entfernt)

Bachelorarbeiten

- Im Umfeld der Theorie-Lehrveranstaltungen aus dem Bachelorstudienplan
 - Simulation von Quantenalgorithmen
 - Erweiterte Probleme aus der Theoretischen Mechanik
 - Fusions-Plasmaphysik
 - Quantenkryptographie
 - Quanten-Monte-Carlo
 - Machine Learning in der Physik
 - Vereinzelt in Kooperation mit Firmen
 - Eigene Ideen und Vorschläge seitens der Studierende sind Willkommen!