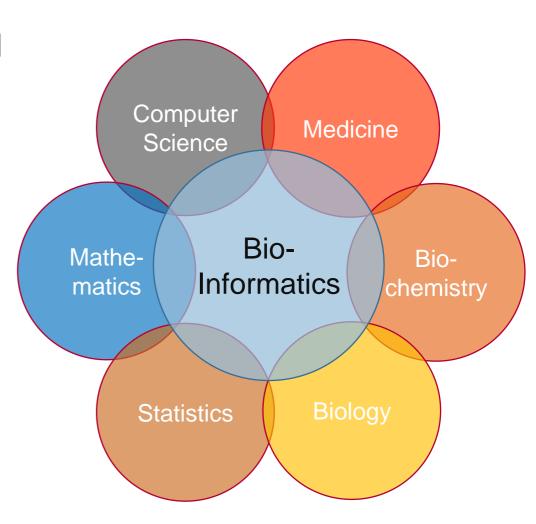


Institute of Biomedical Informatics

Leila Taher

Christian Sailer

Gerhard Thallinger

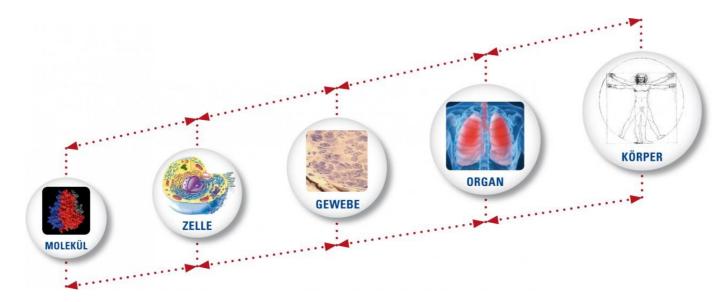


What is "Bioinformatics"

"Ask five bioinformaticians for a definition and you'll get six different ones"

Biology and Informatics = Bioinformatics

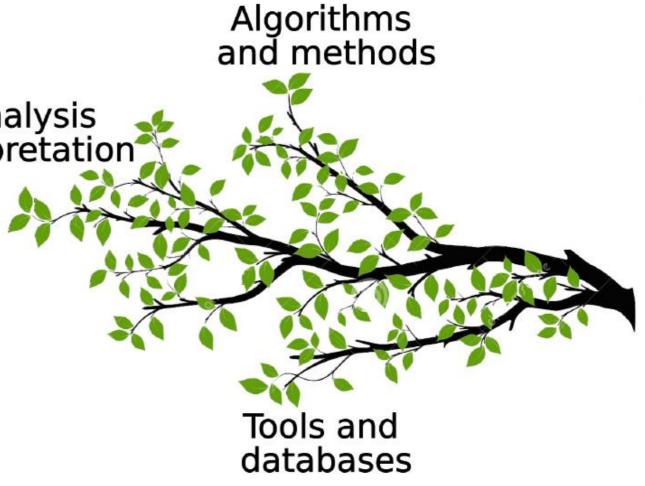
- Theoretical biology
- Computational biology
- Systems biology
- (Theoretical) ecology
- Biomathematics
- Biostatistics
- Computational omics
- Computational evolutionary biology
- Applied bioinformatics



What is "Bioinformatics"

Elucidation of biomoleculare relations in organisms at the cell-, tissueund and organ level ...

... by developing and applying methods from computer science, mathematics and statistics on data generated in the "wet" lab.



What is "Bioinformatics"

Data analysis and interpretation

"Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline."*

* NCBI, https://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/ MolBioReview/bioinformatics.html

Bioinformatics applications

Fight resistance to cancer immunotherapy*

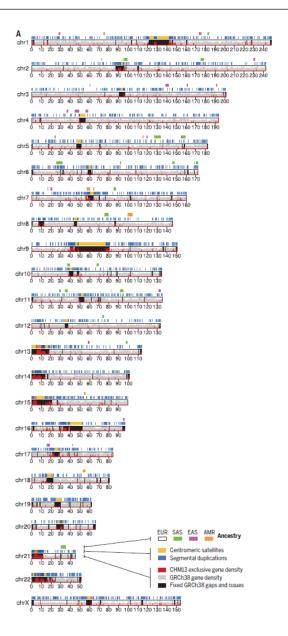
- Single cell sequencing data analysis
- Flow cytometry data analysis

Fibroblasts

Proliferating

IREhigh Mac. T/NK cells /TAM 2 CD8+ M2a Mac effector Erythro. /TAM 1 T cells cDCs M1 Mac CD4+ B cells T cells M2b Mac **MDSCs** Mig. DCs CD8+ Mo Inflamm. naive/ (Tgfbihigh) cells Mo stem-like Resident Mo T cells ISGhigh Mo Neutrophil-like Mast cells Neutrophils n = 53.637 cells Mo UMAP1

^{*}Sun et al. Targeting TBK1 to overcome resistance to cancer immunotherapy, Nature 2023

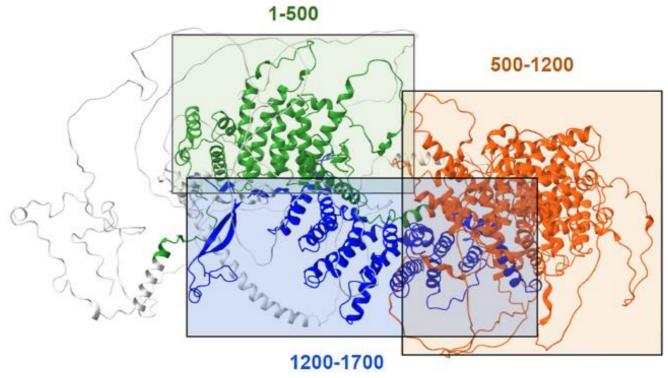


Bioinformatics applications

Completion of the human genome*

- Long-read sequencing
- Genome assembly
- Genome annotation and visualization

^{*}Nurk et al. The complete sequence of a human genome, Science 2022



Bioinformatics applications

3D Structure database of all known proteins*

- Deep learning for structure prediction
- Database application
- Web-frontend

^{*}Varadi et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models, Nucleic Acids Res 2022

Bioinformatics in the BME curriculum I

Bachelor:

- Grundlagen der Informatik
- Grundlagen der Molekular- und Zellbiologie
- Algorithmen in der Bioinformatik
- Verfassen wissenschaftlicher Arbeiten

Bioinformatics in the BME curriculum II

Master's thesis from any major

Master:

- Biostatistics and experimental design
- Evolution
- Molecu
- Perl pre
- Statisti
- Systems biology (coming soon!)
- DNA-RNA sequencing

										 	_			
	Ų,	and Simulation						(· /						
Majors	c2	Biomedical Instrumentation and Sensors								(2)		(3)	 <u> </u>	
	c3	Biomedical Imaging and Sensing		(4)		(5)			(8)	(6)		(7)	(9))
	c4	Computational Neuroscience						(10)					(11	1)
	c 5	Biomedical Device Design, Safety and Regulation			(12)	(13)								
														_

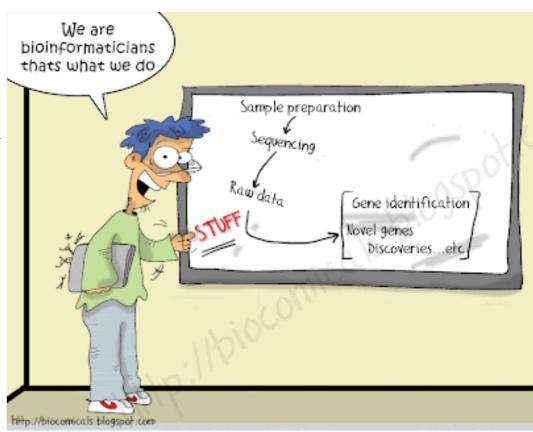
Minors

Thesis topics I

- Characterization of transposons as drivers of genome evolution
- Generation and/or analysis of Oxford Nanopore sequencing data
- Identification of structural variants associated with different cancer types
- Comparative transcriptomic analysis of cancer tumours and derived cell lines
- Implementation of models for simulating different population genetics scenarios
- Investigation of the relationship between enhancer RNA (eRNA) secondary structure and DNA enhancer function
- Application of deep learning in the analysis of omics data
- Long-read transcriptomics (ISO-seq) of fungi

Thesis topics II

- Genome assembly and annotation
- Summarization of functional enrichment analyses
- Visualization of genome annotation
- Investigation of the lipidome using mass spectrometry
- Integrative analysis of data from different omics technologies with applications in biotechnology
- Characterization of the microbiome
- Comparative genomics of microorganisms
- Expansion of the regulatory network of a yeast
- Analysis of the alterations of the genome and epigenome of mammalian cells during fermentation



Bioinformatics core skills

Proficiency in at least one programming language.

Perl, Python and/or R knowledge is a plus

- For specific projects you may need to be familiar with other programming languages
- (Good) understanding of molecular cell biology
- Linux (command line)
- Algorithms
- Databases
- Statistics
- Time management
- Readiness for self-study
- Patience

What you should expect

- No pure literature work (there is always a practical part)!
- Frequent (weekly or biweekly) meetings between you and your supervisor
- Thesis supervision agreement
- Research proposal and short presentation at the beginning of your project
- Final presentation shortly before submitting your thesis
- Regular participation in our weekly lab meetings

Collaborations

Collaboration with:

- Harvard Medical School (Boston)
- Sloan Kettering Cancer Center (New York)
- New York University, Department of Medicine (New York)

=> Stay abroad possible

Thesis combined with a FEMtech scholarship:

- Female students only
- 2-6 month scholarship
- Attractive remuneration

Contact

Talk to us. If you are interested in a particular bioinformatics topic that is not part of the list, we will do our best to design a project around it!

Leila Taher

Christian Sailer

Gerhard Thallinger